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1 Introduction

Classical logic has just two truth values, namely true and false. Any sentence
symbol or well-formed formula will take one of these two truth values in any
interpretation. Although we are familiar with 2-valued sentential logic, there is
no inherent restriction on the number of truth values that can be assigned to
a statement. There are other logics with intermediate truth values. In other
words, they have a truth value for true, one for false, and also other values in
between.

Let us take the example of the statement “Kurt is tall.” The truth or
falseness of this statement is dependent on frame of reference and may be more
true or more false depending on how tall Kurt is. If Kurt is 5’0, then it might
be agreed that the statement “Kurt is tall” is false. If Kurt is 7’0, it might
be agreed that the statement is true. However, if Kurt is 6’0, there is more
ambiguity.

In a more formal construction, let us say that there are 3 values for the
trueness of “tall,” true, false, and somewhat true. Then we could represent
these as 1, meaning true, 0, meaning false, and 1

2 , meaning neither tall nor
not tall. We could then define an algorithm to assign one of these truth values
depending on Kurt’s acutal measurement.

Logics with multiple truth values (i.e., more than 2) were studied in the 1920s
by several famous Logicians. The earliest references begin in 1920 with a paper
by Jan ÃLukasiewicz where the Polish Logician introduced a logic with 3 truth
values, like our example of “Kurt is tall” above. Shortly after, ÃLukasiewicz, along
with the famous Alfred Tarski, extended their work to m truth values. Others
have built on the foundational work of these two, including a formalization of
3-valued sentential logic in 1931 by Mordchaj Wajsberg. [?]

Later, beginning in the mid-1940s and extending through the 1950s, J.
Rosser and B. Turquette provided extensive work in the field of n-valued sen-
tential logic. It is from Rosser and Turquette’s paper, “Axiom Schemes for
M-Valued Propositional Calculi” that a cornerstone of the argument we will
explore comes. In 1974, H. Goldberg, H. Leblanc, and G Weaver published a
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paper, “A Strong Completeness Theorem for 3-Valued Logic.” This will pro-
vide the structure for the argument here, which blends the process of the latter
article with some generalizations of the former. [?]

1.1 Definitions and Terminology

We first need to define a baseline of terminology from which we will work in
this paper.

We will use a basic set of connectives, namely ¬, →, and parentheses. We
employ a countably infinite set of sentence letters, denoted by S0, S1, . . ., and
we will use A, B, C, etc. to denote arbitrary sentence letters. As we are used to,
the length of our sentence letters will be 1, and we denote this with lh(Si) = 1.

From the sentence letters, we will construct well-formed formulas, which are
simply built up from our sentence letters and connectives. We will denote the
well-formed formulas with greek letters, φ, ψ, etc., and we note that all of our
well-formed formulas are either sentence letters themselves, or of the form ¬φ or
(φ→ψ). The length of a well-formed formula in the case of ¬φ will be 1 + lh(φ)
and in the case of (φ→ψ), it will be 3 + lh(φ) + lh(ψ). Sets of well-formed
formulas will be noted with capital Greek letters, such as Σ or Γ.

Definition 1. The set of truth values in n-valued sentential logic is Tn= {0,
1

n−1 , 2
n−1 ,. . ., n−2

n−1 , 1}.
Note that in this discussion, there is exactly one value of true, and one value

of false, namely 0=False and 1=True. 1

The sentence letters, well-formed formulas, and connectives we will use are
independent of our n. The set, Tn, of possible truth values in our n-valued
sentential logic, is generalized as defined above.

We must note, here, that Tn ⊆ Tm if and only if (n-1) divides (m-1). This is
an important fact that tells us that if we have two logics, n-valued and m-valued,
the set of truth values of n-valued are contained in the set of truth values for
m-valued only when n-1 divides m-1. For example, this tells us that in 3-valued
logic, we have 3 truth values that are wholly contained within the set of 5 truth
values for 5-valued logic, since 3-1=2 divides 5-1=4. We can see this clearly,
when we list the set T3={0, 1

2 , 1}, and the set T5={0, 1
4 , 1

2 , 3
4 , 1}.

Definition 2. An n-valued truth assignment is a function h:{Si : i ∈ ω}→Tn.
We extend h to be defined on all well-formed formulas by:
a) h(¬φ)=1-h(φ)
b) h(φ→ψ)=min{1, 1-h(φ)+h(ψ)}

We note that this definition agrees with our standard truth assignents with
n=2.

1There are other logics that consider multiple values representing true, for example, those
where everything over 1

2
is true. However, the scope of this paper will be limited to one

designated truth value.
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Definition 3. φ is an n-valued tautology if and only if h(φ)=1 for all n-valued
truth assignments h. We use the notation |=n φ to indicate φ is a tautology.

We note, here, that there are some well-formed formulas that will be tau-
tologies for some values of n, but not others. This is critical, since we need to
ensure that we work with validities that are uniform in n.

We next need to define satisfiable and logical consequence.

Definition 4. A set Σ of well-formed formulas is satisfiable in n-valued senten-
tial logic if there is at least one n-valued truth assignment h such that h(σ)=1
for all σ ∈ Σ.

Then, further, we can define a logical consequence in this way:

Definition 5. φ is an n-valued logical consequence of Σ if for any n-valued
truth assignment h that satisfies Σ, then h(φ)=1. We write Σ |=n φ.

We can also note that if Σ is n-valued satisfiable, and (n-1) divides (m-1),
then we can conclude that Σ is also m-valued satisfiable. The set of truth val-
ues for n-valued sentential logic are a subset of the truth values for m-valued
sentential logic, since (n-1) divides (m-1), and so a truth assignment h which
satisfies Σ in n-vlaued will also satisfy Σ in m-vlaued, since it can assign the
same truth values.

Definition 6. A deductive system is given by a set of logical axioms and rules
for deriving more well-formed formulas from those axioms.

We will use modus ponens as our only rule, which states that from φ and
(φ→ψ) we can conclude ψ. Note that application of this rule preserves validity
due to the following lemma, and, more generally, logical consequence.

Lemma 1. If Σ|=n φ and Σ|=n(φ→ψ) then Σ|=n ψ.

We must also define a set of logical axioms Λn such that |=n φ for all φ ∈ Λn.

Definition 7. A deduction in n-valued logic from a set Σ is a finite sequence
φ0, φ1, . . ., φm of well-formed formulas such that for each i≤m one of the
following holds:
(i) φi ∈ Λm ∪ Σ
(ii) there are j, k<i such that φk=(φj→φi), in other words, φi follows from φj,
φk by modus ponens.
We say φ is deducible from Σ, written Σ`nφ, if an only if there is a deduction
in n-valued logic φ0, φ1, . . ., φm from Σ such that φ=φm.

We also use the idea of an inconsistent set.
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Definition 8. A set Σ is said to be n-valued inconsistent if there exists a well-
formed formula φ such that Σ`nφ and Σ`n¬φ. We say a set is consistent if the
set is not inconsistent.

Finally, we need to introduce the Soundness Theorem at this point.

Theorem 1. (Soundness): Let Σ be a set of well-formed formulas and φ be a
well-formed formula. If Σ`nφ then Σ |=n φ.

Proof: Let φ0, φ1, . . ., φm be a deduction of φ from our set Σ such that
φn=φ.

We want to show that Σ |=n φi for all i≤m. We will use induction on i.
Our base case is φ0, where i=0. We know that φ0 ∈ Σ or φ0 ∈ Λn where Λn

is our set of logical axioms. If φ0 ∈ Σ, then Σ |=n φ0. If φ0 ∈ Λn, then |=n φ0,
which meams that Σ |=n φ0.

We will assume our inductive hypothesis, that for all i<m, Σ |=n φi. Then,
we wish to show that Σ |=n φm.

We know that there are three possibilities for φm; it can be in Σ, a logical
axiom, or the conclusion of an implication.

Case 1: If φm ∈ Σ or φm ∈ Λn, then, as above, Σ |=n φm.
Case 2: φm is be the conclusion of an implication. In other words, φk=

(φi→φm) and k,i<m. By our inductive hypothesis, then, Σ |=n φi and Σ |=n

φk=(φi→φm), since k,i<m. Then, by Lemma 1 we have that Σ |=n φm. There-
fore, if Σ`nφ, then Σ |=n φ. ¤

1.2 Goal

Our goal is to investigate proof systems for n-valued sentential logic satisfying
the Strong Completeness Theorem: Σ`nφ if and only if Σ |=n φ. We provide
here a set of 12 axiom schemas as our Λn such that if they are all `n-provable,
then strong completeness holds. We do not claim that this Λn is minimal, but
rather assert that if a minimal set Λmin is obtained, that each of the axioms
schemas within Λn will be either an axiom within Λmin or provable from the
axioms within Λmin. In this way, the proof of Strong Completeness provided
here will stand, and further, the proof will be automatic without further work
if these axioms are deducible.

2 Definition of Jn
q (φ)

One of the obstacles in working with n-valued sentential logic is that Tn is
dependent on n, and it is difficult to make a general argument that applies to
all n. Rosser and Turquette introduce a concept that we will need as we move
forward with our proof of the Completeness Theorem.

Rosser and Turquette claim and prove that for any well-formed formula φ
in n-valued sentential logic, there is another well-formed formula that we can
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say is strictly true, taking the truth value of 1, or strictly false, taking the truth
value of 0, depending on the truth value of φ.

First, the key characteristic of this new formula can be expressed in the fol-
lowing theorem. Note that we express the truth value assigned to the formula
using our truth assignment h, as we have already defined it.

Theorem 2. For any n and any q ∈ Tn and any well-formed formula φ, there
is a well-formed formula Jn

q (φ) such that,

h(Jn
q (φ)) =

{
1 iff h(φ) = q;
0 otherwise.

We think of Jn
q (φ) as saying “φ has truth value q.”

We do not provide the proof of this theorem here, since it is rather long, but
we do explicitly define Jn

1 (φ) for all n and J3
q(φ) for each q ∈ T3

It is necessary to discuss Jn
q (φ) in further detail, and we continue to follow

the arguments provided by Rosser and Turquette.
We need to define a notation γ recursively to use in our explanation of

Jn
q (φ). For any well-formed formula φ in our language, let γ1(φ)=¬φ, and let

γi+1(φ)=φ→γi(φ).
Let us use our definition of our truth assignment h to explore values of γ.

Claim: h(γi(φ))=min{1, (1-h(φ)·i}.

Proof by induction on i:
If i=1, then h(γi(φ))=h(¬φ)=1-h(φ). Since i=1, this is also equal to (1-

h(φ))·i. Since 0≤h(φ)≤1, then 0≤1-h(φ)≤1, and therefore, h(γi(φ))=min{1,
(1-h(φ))·i}

Assume that h(γi(φ))=min{1, (1-h(φ))·i} for i≤m. Prove true for i=m+1.
γm+1(φ)=φ→γm(φ), by the definition of γ. h(γm+1(φ))=min{1, 1-h(φ)+h(γm(φ))}
by the definition of our truth assignment h. This equals min{1, 1-h(φ)+min{1,
(1-h(φ))·m}} since h(γm(φ))=min{1, (1-h(φ))·m} by our inductive hypothesis.
Then, min{1, 1-h(φ)+min{1, (1-h(φ))·m}}=min{1, 1-h(φ)+(1-h(φ))·m} since
if min{1, (1-h(φ))·m}=1, then min{1, 1-h(φ)+min{1, (1-h(φ))·m}}=1. This,
then, yields our desired result: h(γm+1(φ)=min{1, (1-h(φ))(m+1)} ¤

Let us now define Jn
1 (φ)=¬γn−1(φ) in n-valued logic. Note that this defines

Jn
1 (φ) for all n.

We claim that if h(φ)=1, then h(Jn
1 (φ))=1 and if h(φ)6=1, then h(Jn

1 (φ))=0.
We see that by our previous claim, h(γn−1(φ))=min{1, (1-h(φ))(n-1)}. Thus,

when h(φ)=1, h(γn−1(φ))=min{1, (1-1)(n-1)}=0. Since Jn
1 (φ)=¬γn−1(φ), we

have Jn
1 (φ)=1 and when h(φ)6=1, Jn

1 (φ)=0. ¤
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The theorem above states that Jn
q (φ) is a well-formed formula, built up using

sentence letters and ¬ and →.
By way of example, we consider 3-valued sentential logic. Our set of truth

values T3={0, 1
2 , 1}, so therefore, for a given well-formed formula φ, we have 3

explicit values of q in J3
q(φ), J3

0(φ), J3
1
2
(φ), and J3

1(φ).

According to our definition, J3
1(φ)=¬γn−1(φ)=¬γ2(φ). By our recursive defi-

nition of γi(φ), γ2(φ)=φ→¬φ. So, ¬γ2(φ)=¬(φ→¬φ). As we know, h(γi(φ))=min{1,
(1-h(φ))·i}. So, h(J3

1(φ))= h(¬γ2(φ))=min{1, (1-h(φ))·2}. Since the possible
values of h(φ) are 0, 1

2 , and 1,

h(J3
1 (φ)) =

{
1 if h(φ) = 1;
0 if h(φ) = 0 or h(φ) = 1

2 .

The explicit statement of J3
0(φ)=¬(¬φ→φ). We can also say from our earlier

work, and it is easily verifiable, that

h(J3
0 (φ)) =

{
1 if h(φ) = 0;
0 if h(φ) = 1 or h(φ) = 1

2 .

Rosser and Turquette provide a procedure for finding φ for each Jn
q (φ) in

n-valued logic. [?][Page64] Utilizing this procedure for J3
1
2
(φ) yields

J3
1
2
(φ)=J3

0([(¬φ→φ)→φ]→¬[(φ→¬φ)→¬φ]). Since we said that J3
0(φ)=J3

1(¬φ),

and J3
1(φ)=φ→¬φ, we can conclude that the explicit statement of J3

1
2
(φ)=

¬[([(¬φ→φ)→φ]→¬ [(φ→¬φ)→¬φ])→¬ ([(¬φ→φ)→φ]→¬[(φ→¬φ)→¬φ])]. By
using our truth assignment h, we can verify that this statement satisfies our
characteristic of Jn

q (φ) such that J3
1
2
(φ) is 1 when φ is 1

2 , and 0 otherwise.

2.1 Definition of Dn

Definition 9. A well-formed formula φ is n-valued determinate if and only if
for every n-valued truth assignment h, either h(φ)=0 or h(φ)=1.

Definition 10. The set Dn is the set of all well-formed formulas built from our
Jn

q (φ)s in n-valued sentential logic, using the connectives ¬ and →. We will call
such well-formed formulas Boolean combinations of Jn

q (φ)s.

We can see from our definition of n-valued truth assignment that our ex-
tension of a truth assignment h to all well-formed formulas will ensure that
Boolean combinations of determinate well-formed formulas will also be deter-
minate. Therefore, Dn is a set of determinate well-formed formulas, since each
Jn

q (φ) is.
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3 Axioms

An
1 : (φ→φ)

An
2 : (φ→(ψ→φ))

An
3 : (¬φ→¬ψ)→(ψ→φ)

An
4 : (φ→(ψ→θ))→((φ→ψ)→(φ→θ)) for φ ∈ Dn

An
5 : (Jn

1 (φ)→φ)
An

6 : (φ → (φ → . . . (φ︸ ︷︷ ︸
(n−1)

→Jn
1 (φ)). . .))

An
7 : (¬Jn

0 (φ)→(¬Jn
1

n−1
(φ)→. . .(¬Jn

n−2
n−1

(φ)→Jn
1 (φ)). . .))

An
8 : Jn

q (φ)→Jn
1−q(¬φ), for all q ∈ Tn

An
9 : Jn

q (φ)→[Jn
r (ψ)→Jn

min{1,1−q+r}(φ → ψ)] for all q, r ∈ Tn

An
10: Jn

q (φ)→¬Jn
r (φ) for all q 6=r∈ Tn

An
11: ¬φ→(φ→ψ)

An
12: (φ→¬φ)→¬φ for φ ∈ Dn

Theorem 3. All axioms An
1 through An

12 are n-valued tautologies.

Further discussion of this theorem can be found in Appendix A.

The axioms here are drawn from the sources used in this paper, specifically
the article [?] and book [?] by Rosser and Turquette, and the article [?] by
Goldberg, Leblanc, and Weaver. Of note, An

4 is taken from Mendelson [?]. This
axiom was extended through a concept of stuttering in Golberg, Leblanc, and
Weaver, to 3-valued logic, but it is used in this paper only for determinate
sentences. Axioms An

9 and An
10 were derived from Rosser and Turquette, but

are not direct restatements. Finally, An
6 borrows the concept of stuttering from

Goldberg, Leblanc, and Weaver, but applies it to the Jn
q (φ) concept of Rosser

and Turquette. An argument for this axiom can be found in Appendix A.

4 Lemmas

From these axioms, we can derive the following facts:

Lemma 2. (Finiteness): Let Σ `nψ. Then, there exists a finite subset Σ′ of Σ
such that Σ′`nψ.

Proof: Let Σ `nψ and let φi, . . ., φn be a deduction of ψ from Σ such
that φn=ψ. Then, for each φi, φi∈ Σ or φi∈Λ or φi is the conclusion on an
implication, some φj , φk, j, k<i. Let Σ′= {φi:φi∈ Σ} Then Σ′`nψ and |Σ′|<ω.
¤

Lemma 3. Weak Deduction Theorem: If Σ ∪ {φ}`nψ, and φ ∈ Dn, then
Σ`n(φ→ψ).
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Proof: Let ψ0, ψ1, . . . , ψm be a proof of ψ from Σ ∪ {φ} with ψm=ψ. We prove
by induction on i that Σ`n(φ→ψi) for i≤m.
Base case: ψ0 ∈ Λn, where Λn is the set of logical axioms for the n-valued
sentential logic, or ψ0=φ, or ψ0 ∈ Σ. If ψ0 ∈ Λn, then |=nψ0 and Σ`nψ0.
Σ`nψ0→(φ→ψ0) by An

2 , so Σ`nφ→ψ0 by modus ponens. If ψ0=φ then since
Σ`nφ→φ by An

1 , then Σ`nφ→ψ0. If ψ0 ∈ Σ, then Σ`nψ0, and again Σ`nψ0→(φ→ψ0)
by An

2 , so Σ`nφ→ψ0 by modus ponens.

Inductive Hypothesis: Assume for all i<m, Σ`n(φ→ψi). We show that
Σ`n(φ→ψm)

We consider 2 cases. Case 1: ψ ∈ Λn or ψ=φ or ψ ∈ Σ. The proof for
these is the same as in the base case. Case 2: ψm is the conclusion of an impli-
cation from ψj and ψk=(ψj→ψm) where j,k<m. By the inductive hypothesis,
Σ`nφ→ψj and Σ`nψk=φ→(ψj→ψm).

By axiom schema An
4 , |=n(φ→(ψ→θ))→((φ→ψ)→(φ→θ)) for φ ∈ Dn, we

have Σ`n(φ→(ψj→ψi))→((φ→ψj)→(φ→ψi)). Hence by modus ponens, we get
Σ`n((φ→ψj)→(φ→ψi)). And, by modus ponens again, we get Σ`n(φ→ψi) as
desired. ¤

Lemma 4. If a set of well-formed formulas, Σ is inconsistent in n-valued logic,
then Σ`nφ for all φ in n-valued sentential logic.

Proof: By definition of inconsistent, Σ`nφ and Σ`n¬φ. From An
11, we have

|=n¬φ→(φ→ψ). Then, since Σ`n¬φ, and Σ`n¬φ→(φ→ψ), we have that Σ`n(φ→ψ)
by modus ponens. Since we also know that Σ`nφ, we can say Σ`nψ for all ψ,
also by modus ponens.

Lemma 5. If Σ is n-valued consistent, then for any φ there exists a q ∈ Tn

such that Σ ∪ {Jn
q (φ)} is consistent.

Proof: By way of contradiction, assume Σ ∪ {Jn
q (φ)} is not consistent for

all q. Then by Lemma 4, we can say that Σ ∪ {Jn
q (φ)}`n¬(δ→δ), for all

q, and by the Weak Deduction Theorem, Σ`n{Jn
q (φ)}→¬(δ→δ). Therefore,

Σ `n(δ→δ)→¬Jn
q (φ) by An

3 . Since Σ`n(δ→δ) by An
1 , then we can conclude

Σ`n¬Jn
q (φ) by modus ponens. But, An

7 says
|=n(¬Jn

0 (φ)→(¬Jn
1

n−1
(φ)→. . .(¬Jn

n−2
n−1

(φ)→Jn
1 (φ)). . .)). But, this means that since

Σ`n¬Jn
q (φ), then by modus ponens n-1 times, we get Σ`nJn

1 (φ), but is a con-
tradiction, since we assumed Σ∪{Jn

q (φ)} is inconsistent for all q. Therefore, for
any φ, there exists a q∈ Tn such that Σ∪Jn

q (φ) is consistent.

Lemma 6. Let Σ be a set of well-formed formulas and let φ ∈ Dn. Then Σ∪{φ}
is inconsistent iff Σ`n¬φ.
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Proof: First we consider if Σ`n¬φ. Then Σ ∪ {φ} `n ¬φ. But Σ ∪ {φ} `n ¬φ
since φ ∈ Σ ∪ {φ}. Therefore, Σ ∪ {φ} is inconsistent. Then, we consider if
Σ ∪ {φ} is inconsistent. Then, by Lemma 4, Σ ∪ {φ} `n ¬φ. By the Weak
Deduction Theorem, Σ `n(φ→¬φ). Then, by An

12 we have Σ`n(φ→¬φ)→¬φ.
Then, by modus ponens, Σ `n ¬φ. ¤

5 Strong Completeness

From this point, we will use the axiom schemas, lemmas, and concepts outlined
above to prove the Strong Completeness Theorem.

Theorem 4. Let Σ be a set of well-formed formulas and φ be a well-formed
formula. Then, Σ`nφ if and only if Σ |=n φ.

Soundness, provided above in the definitions and terminology section, gives
us one direction of Completeness. For clarity, we restate:

The Soundness Theorem: Let Σ be a set of well-formed formulas and φ
be a well-formed formula. If Σ`nφ then Σ |=n φ.

Now, we proceed through a series of steps to prove the remaining direction
of Completeness.

5.1 If Σ is consistent in n-valued logic, then Σ can be ex-
tended to a maximally consistent Σ∞ in n-valued logic.

Let Σ be a consistent set of well-formed formulas in n-valued sentential logic,
then for every φ, either Σ 0n φ or Σ 0n ¬φ (or both).

Claim: If Σ is consistent, then Σ can be extended to a maximally consistent
Σ∞.

The well-formed formulas of n-valued sentential logic are countably infinite,
and therefore enumerable. Therefore, let the set of all well-formed formulas be
{φ0, φ1, φ2, φ3, . . .}.

Let Σ0=Σ and let

Σi+1 =

{
Σi ∪ {φi} if Σi∪{φi} is consistent;
Σi Otherwise.

Let Σ∞=
⋃

i∈ωΣi.

Claim: Σ∞ is consistent.

Proof: By way of contradiction, assume Σ∞ is inconsistent. By the finiteness
lemma, there exists a Σ′ ⊆ Σ∞ such that Σ′ is inconsistent as well. But, Σ′

must be a subset of some Σi, and each Σi is consistent by construction, so this
is a contradiction. Therefore, Σ∞ is consistent. ¤
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Claim: Σ∞ is maximally consistent.
By maximally consistent, we mean that Σ is consistent, and if Σ ∪ {φ} is

consistent, then φ ∈ Σ. By way of contradction, suppose Σ∞ is not maximally
consistent. Then, since we are given that Σ∞ is consistent, this means that
there exists some well-formed formula φ such that Σ∞ ∪ {φ} is consistent but
φ /∈ Σ∞. Since we enumerated our well-formed formulas, we know that φ=φi

for some i. Since Σ∞ ∪{φ} is consistent, Σi ∪{φ} is consistent for every i since
Σi∪{φ}⊆Σ∞∪{φ}. Then, φ ∈ Σi+1 by construction, which means that φ ∈ Σ∞
which is a contradction. Therefore, Σ∞ is maximally consistent. ¤

5.2 If Σ `n φ then Σ `nJn
1(φ)

Proof:
By An

6 , `n(φ → (φ → . . . (φ︸ ︷︷ ︸
(n−1)

→Jn
1 (φ)). . .)), so Σ`n(φ → (φ → . . . (φ︸ ︷︷ ︸

(n−1)

→Jn
1 (φ)). . .)).

It is given that Σ`nφ. By applying modus ponens n-1 times, we get Σ`nJn
1 (φ).

¤

5.3 If φ ∈ Σ∞ then Jn
1(φ)∈ Σ∞

Proof:
We are given that φ ∈ Σ∞, so it follows by the previous section (5.2), that

Σ∞`nJn
1 (φ), and therefore Σ∞∪{Jn

1 (φ)} is consistent. Then we can conclude
that Jn

1 (φ)∈ Σ∞. ¤

5.4 Define h which satisfies Σ∞.

We now proceed by defining a truth assignment h in the following way.
Let Si be a sentence letter in n-valued sentential logic. Then, define h(Si)=q

if and only if Jn
q (Si)∈Σ∞. Then, this definitioin along with our recursive clauses

regarding all truth assignments in n-valued logic, define the truth values of all
well-formed formulas. We want to show that h(φ)=q if and only if Jn

q (φ)∈Σ∞.
By our definition of h, Σ∞`nJn

q (Si) if and only if h(Si)=q. We know that
since Si is a sentence letter, the length of Si, denoted lh(Si) = 1. Therefore,
we use induction on the length of φ in Jn

q (φ). Assume that for any φ such that
lh(φ) < m, the truth assignment, h(φ)=q if and only if Jn

q (φ)∈ Σ. Then, there
are two cases for lh(φ) = m.

Case 1: φ=¬χ for some well-formed formula χ. First, we consider if Jn
q (φ)∈Σ∞,

where φ=¬χ, then h(φ)=q. We know that Σ∞`nJn
q (φ), so Σ∞`nJn

q (¬χ). By
axiom An

8 , we know that |=nJn
q (φ)→Jn

1−q(¬φ), for all q ∈ Tn. Therefore, we
have Σ∞`nJn

1−q(χ). Since lh(χ) < m, by our inductive hypothesis, we have
that h(χ)=1-q, and by our recursive clauses regarding all truth assignments, we
have that h(¬χ)=1-(1-q)=q. Therefore, h(φ)=q.

Now, we consider if h(φ)=q, where φ=¬χ, then Jn
q (φ)∈Σ∞. Since h(¬χ)=q,

we know that h(χ)=1-q, and since lh(χ) < m, by our inductive hypothesis,

10



we have that Σ∞`nJn
1−q(χ). Then, by axiom An

8 and by An
3 , we have that

Σ∞`nJn
q (¬χ), and therefore, Σ∞`nJn

q (φ).
Case 2: Let φ=χ→µ for some well-formed formulas χ and µ. Since lh(φ)=m,

we know that lh(χ) and lh(µ) are less than m. As above, we consider first
if Jn

q (φ)∈Σ∞, where φ=χ→µ, then h(φ)=q. We know that Σ∞`nJn
q (φ), so

Σ∞`nJn
q (χ→µ). By Lemma 5, we can see that there exists an r such that

Jn
r (χ)∈ Σ∞ and an s such that Jn

s (µ)∈ Σ∞. Then, by section 5.3, if Jn
r (χ)∈ Σ∞

and Jn
s (µ)∈ Σ∞, then Σ∞`nJn

r (χ) and Σ∞`nJn
s (µ). Axiom An

9 states
|=nJn

q (φ)→[Jn
r (ψ)→Jn

min{1,1−q+r}(φ → ψ)], which means that
Σ∞`nJn

r (χ)→[Jn
s (µ)→Jn

min{1,1−r+s}(χ → µ)]. Since we know that Σ∞`nJn
r (χ),

then by modus ponens we have that Σ∞`nJn
s (µ)→Jn

min{1,1−r+s}(χ → µ). By
modus ponens again, since Σ∞`nJn

s (µ), we have Σ∞`nJn
min{1,1−r+s}(χ → µ).

It also follows by our inductive hypothesis that h(χ)=r and h(µ)=s, and, by
our recursive clauses regarding truth assignments, that h(χ→µ)=h(φ)=min{1,
1-r+s}. But, we said that
Σ∞`nJn

min{1,1−r+s}(χ → µ) or Σ∞`nJn
min{1,1−r+s}(φ). Thus, if Jn

q (φ)∈Σ∞,
where φ=χ→µ, then h(φ)=q.

Now, we consider if h(φ)=q, where φ=χ→µ, then we want to show Jn
q (φ)∈Σ∞.

Since h(φ)= h(χ→µ)=q, we know that h(χ→µ)=min{1, 1-h(χ)+h(µ)}=q, and
since lh(χ) < m and lh(µ) < m, by our inductive hypothesis, we have that
h(χ)=r ↔ Jn

r (χ)∈ Σ∞ and h(µ)=s ↔ Jn
s (µ)∈ Σ∞. Then, Σ∞`nJn

r (χ) and
Σ∞`nJn

s (µ), so using Axiom An
9 , we get that

Σ∞`nJn
r (χ)→[Jn

S(µ)→Jn
min{1,1−r+s}(χ → µ)]. Then, by modus ponens twice,

we have that Σ∞`nJn
min{1,1−r+s}(χ → µ)]. So, Σ∞`nJn

min{1,1−r+s}(φ)]. So,
Σ∞`nJn

q (φ)], and therefore, we conclude that Jn
q (φ)∈ Σ∞ by construction of

Σ∞.
Therefore, we have shown that Jn

q (φ)∈Σ∞ if and only if h(φ)=q. ¤

5.5 If Σ is consistent then Σ is satisfiable.

Proof: We have shown that for Σ consistent, For all φ ∈ Σ we have that
Jn
1 (φ)∈ Σ∞. This means that our new truth assignment h assigns the truth

value of 1 to Jn
1 (φ) and also to φ. Then, we can say that h(Jn

1 (φ))=1 and
h(φ)=1 for all φ ∈ Σ. Thus, by the definition of satisfiable, Σ is satisfiable.

5.6 Strong Completeness.

We assume Σ |=n φ. We will show that Σ `n φ. If Σ |=n φ then Σ |=nJn
1 (φ).

Therefore Σ∪{¬Jn
1 (φ)} is not satisfiable. Then, by using the result from section

5.5, Σ ∪ {¬Jn
1 (φ)} is not consistent. Therefore, by Lemma 4, Σ ∪ {¬Jn

1 (φ)} `n

¬(ψ→ψ). And, by the Weak Deduction Theorem, we have that Σ `n ¬Jn
1 (φ)→

¬(ψ→ψ). Then, by applying An
3 , Σ `n(ψ→ψ)→Jn

1 (φ). And then we have that
Σ`nJn

1 (φ) by modus ponens. And finally, by applying An
5 and modus ponens,

we get Σ`nφ. ¤
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Therefore, we have that if Σ is a set of well-formed formulas and φ is a
well-formed formula. Then, Σ`nφ if and only if Σ |=n φ.

6 Conclusion

We have shown that using our set of axioms schemas, we can prove Strong Com-
pleteness in n-valued sentential logic. While this set of axioms is not minimal,
for any set of axioms that includes all of these, Strong Completeness will hold.
And, further, for any set of axioms from which all of these are deducible, Strong
Completeness will hold, without further work.

7 Appendix A: Discussion of Theorem 3

Each of the axioms provided in section 3 of this paper is an n-valued tautology.
Arguments are provided here for select axioms to verify this point.

We show |=n(φ→(ψ→φ)) [An
2 ]

Argument: We recall that h(φ → ψ)=1 if and only if h(φ)≤h(ψ). There-
fore, we want to show that h(φ)≤h(ψ→φ). h(ψ → φ)=min{1, 1-h(ψ)+h(φ)} by
the definition of our truth assignment h. So, we need to show that h(φ)≤min{1,
1-h(ψ)+h(φ)}. h(φ) must be either less than, equal to, or greater than h(ψ), so
we consider those three cases.

Case 1: h(φ)<h(ψ). Then, 1-h(ψ)+h(φ)<1 and so min{1, 1-h(ψ)+h(φ)}=1-
h(ψ)+h(φ). So, our inequality is h(φ)≤1-h(ψ)+h(φ), which is necessarily true.
Therefore, our claim holds for this case.

Case 2: h(φ)=h(ψ). Then, 1-h(ψ)+h(φ)=1 and so min{1, 1-h(ψ)+h(φ)}=1.
So, our inequality is h(φ)≤1, which is true by the definition of our truth assign-
ment h. Therefore, our claim holds for this case.

Case 3: h(φ)>h(ψ). Then, 1-h(ψ)+h(φ)>1 and so min{1, 1-h(ψ)+h(φ)}=1.
So, again our inequality is h(φ)≤1, which is true by the definition of our truth
assignment h. Therefore, our claim holds for this case.

So, An
2 holds for n-valued sentential logic.¤

We show |=n(¬φ→¬ψ)→(ψ→φ) [An
3 ]

Argument: Let h(φ)=k and let h(ψ)=l. Then h(¬φ)=1-k and h(¬ψ)=1-l.
Then h(¬φ →¬ψ)= min{1, 1-(1-k)+(1-l)}=min{1, 1-l+k} and h(ψ → φ)=min{1,
1-l+k}. Since these are the same, regardless of the values of k and l, h(¬φ→¬ψ)→(ψ →
φ)=1.

So, claim An
3 holds for n-valued sentential logic. ¤

We show |=n(φ→(ψ→θ))→((φ→ψ)→(φ→θ)) for φ ∈ Dn [An
4 ]
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Argument: Using our definition of the truth assignment h, we see that
h((φ→(ψ→θ))→((φ→ψ)→(φ→θ))) =min{1, 1-h(φ→(ψ→θ))+h((φ→ψ)→(φ→θ))}.
Because φ ∈ Dn, we know that h(φ) can only equal 0 or 1. Therefore, we
look at those two cases. Case 1: if h(φ)=1, then h(φ→(ψ→θ))= h(ψ→θ),
h(φ→ψ)=h(ψ), and h(φ→θ)=h(θ). So, h((φ→(ψ→θ))→((φ→ψ)→(φ→θ))) =
min{1, 1-h(ψ→θ)+ h((φ→ψ)→(φ→θ))}= min{1, 1-min{1,1-h(ψ)+h(θ)}+min{1,
1-h(φ→ψ)+h(φ→θ)}}= min{1, 1-min{1,1-h(ψ)+h(θ)}+min{1, 1-h(ψ)+h(θ)}}=1.
Case 2: if h(φ)=0, then h(φ→(ψ→θ))= 1 h(φ→ψ)=1, and h(φ→θ)=1. So,
h((φ→(ψ→θ))→((φ→ψ)→(φ→θ))) =min{1, 1-1+min{1, 1-1+1}}=min{1, 1-
1+1}=1.}¤

We show |=n(φ → (φ → . . . (φ︸ ︷︷ ︸
(n−1)

→Jn
1 (φ)). . .)) [An

6 ]

Argument: We have stated that h(φ→ψ)=min{1, 1-h(φ)+h(ψ)}. Then we can
say that h(φ → (φ → . . . (φ︸ ︷︷ ︸

(n−1)

→Jn
1 (φ)). . .)) =

min{1, 1 - h(φ) + h(φ → (φ → . . . (φ︸ ︷︷ ︸
(n−2)

→Jn
1 (φ)). . .))}, and thus

h(φ → (φ → . . . (φ︸ ︷︷ ︸
(n−1)

→Jn
1 (φ)). . .))= min{1, (n-1)(1-h(φ))+h(Jn

1 (φ))}. We also know

that 0≤h(φ)≤1 for all φ, and we have stated that for a specific value of n, the set
of truth values Tn = {0, 1

n−1 , 2
n−1 ,. . ., n−2

n−1 , 1}, and so h(φ)∈ Tn. Therefore,
h(φ) = b

n−1 for some 0≤b≤n-1. If b=n-1, then h(φ) = 1 and then h(Jn
1 (φ))

= 1, so h(φ → (φ → . . . (φ︸ ︷︷ ︸
(n−1)

→Jn
1 (φ)). . .)) = 1. If b<n-1, then h(Jn

1 (φ)) = 0,

since h(Jn
1 (φ)) = 0 if h(φ)6=1. Then, min{1, (n-1)(1-h(φ))+h(Jn

1 (φ))} = min{1,
(n-1)(1- b

n−1 )+h(Jn
1 (φ))} = min{1, ((n-1)-b)+h(Jn

1 (φ))}. But, since b<n-1, n-1-
b≥1, so min{1, (n-1)(1-h(φ))+h(Jn

1 (φ))} = 1. Therefore,
h(φ → (φ → . . . (φ︸ ︷︷ ︸

(n−1)

→Jn
1 (φ)). . .)) = 1.

We show |=n(φ→¬φ)→¬φ for φ ∈ Dn [An
12]

Argument: We have stated that h(¬φ) = 1-h(φ) for all φ, and h(φ→ψ) =
min{1, 1-h(φ)+h(ψ)}. Therefore, we can see that if φ ∈ Dn, then there are two
cases. Case 1: h(φ) = 1, then h((φ→¬φ)→¬φ) = 1. Case 2: h(φ) = 0, then
h((φ→¬φ)→¬φ) = 1. Thus, |=2(φ→¬φ)→¬φ is a two-valued tautology.
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